

Chapter One

Introduction to Machine Learning

Prepared by: Tsehay A. (B.Sc., and M.Sc., in Computer Science)

Department of Computer Science

2015 E.C

Outline

- Introduction
- What is machine learning?
- History of machine learning.
- Applications of machine learning.
- Types of machine learning.

What is machine learning?

- Learning is any process by which a system improves performance from experience.
- Machine Learning is the study of algorithms that:
 - ✓ improve their performance P
 - ✓ at some task T
 - ✓ with experience E.
- A well-defined learning task is given by $\langle P, T, E \rangle$
- Machine learning is field of study that focuses on computer system that can learn from data.

Example

- Handwriting recognition learning problem

- ✓ Task T: Recognizing and classifying handwritten words within images.
 - ✓ Performance P: Percent of words correctly classified.
 - ✓ Training experience E: A dataset of handwritten words with given classifications.

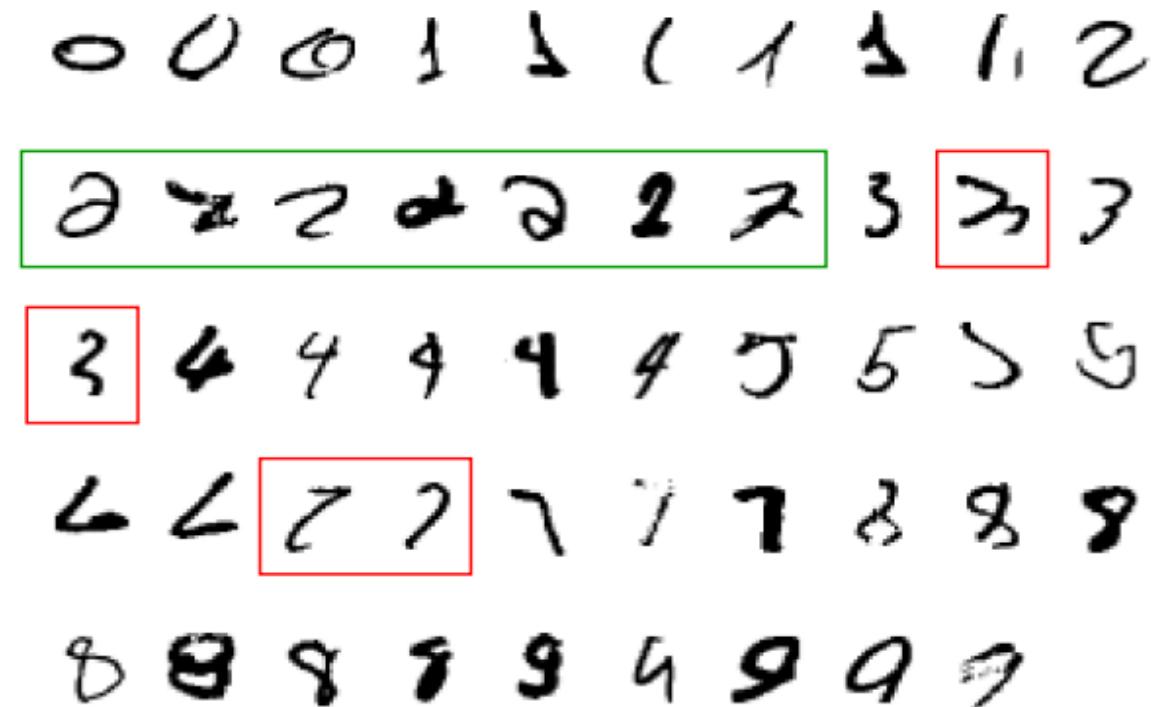
- A chess learning problem

- ✓ Task T: Playing chess.
 - ✓ Performance measure P: Percent of games won against opponents.
 - ✓ Training experience E: Playing practice games against itself.

- A computer program which learns from experience is called a machine learning program or simply a learning program.

Machine learning vs traditional programs

- Traditional programs are being explicit programmed to perform specific task.
- Machine learning system is often called model that can learn to perform a specific task by analyzing many examples for a particular problem.
- For example, machine learning system can learn to recognize an image of a dog by being shown many images of a dog.
- The machine learning program learns to recognize the image of dog without being explicitly programmed.


When do we use machine learning?

ML is used when:

- Human expertise does not exist (navigating on Mars)
- Humans can't explain their expertise (speech recognition)
- Models must be customized (personalized medicine)
- Models are based on huge amounts of data (genomics)

Applications of machine learning

- A classic example of a task that requires machine learning:
- It is very hard to say what makes a 2.

A grid of handwritten digits. The digits are arranged in four rows. The first row has 10 digits: 0, 0, 0, 1, 1, 1, 1, 1, 1, 2. The second row has 10 digits: 2, 2, 2, 2, 2, 2, 3, 3, 3, 3. The third row has 10 digits: 3, 4, 4, 4, 4, 5, 5, 5, 5, 5. The fourth row has 10 digits: 6, 6, 7, 7, 7, 7, 8, 8, 8, 8. Some digits are highlighted with colored boxes: the second digit in the second row is highlighted with a green box; the third digit in the second row and the second digit in the third row are highlighted with red boxes; the second digit in the fourth row is highlighted with a red box.

Cont.

- Recognizing patterns:
 - ✓ Facial identities or facial expressions.
 - ✓ Handwritten or spoken words, and Medical images.
- Generating patterns:
 - ✓ Generating images or motion sequences.
- Recognizing anomalies:
 - ✓ Unusual credit card transactions.
 - ✓ Unusual patterns of sensor readings in a nuclear power plant.
- Prediction: Future stock prices or currency exchange rates.

Sample applications

- Web search
- Face detection
- Recommendation system
- E-commerce
- Space exploration
- Robotics
- Fraud detection
- Social networks

Types of machine learning techniques

In general machine learning algorithms can be classified into three types.

1) Supervised learning: A set of examples with the correct responses (targets) is provided and, based on this set, the algorithm generalizes to respond correctly to all possible inputs.

- Supervised learning is the machine learning task of learning a function that maps an input to an output based on example input-output pairs.
- In the optimal case, the function will correctly determine the class labels for unseen instances.

Supervised learning

- In supervised learning we have dataset with set of features and our goal is to predict where the object will fall given the set of features.
- We are given a dataset and we already know what the correct output should look like, having the idea that there is a relationship between the input and output.
- *Example: predicting a car price:* car price depends on features like consumption of diesel, model, and so on, and these are the features and we try to predict price based on these features.
- *Example: predicting house price:* the house price can be predicted based on certain features such as number of bed rooms, lot size, square foot. *Classification* and *regression* are some of the techniques used.

Cont.

2) *Unsupervised learning*: Correct responses are not provided, instead the algorithm tries to identify similarities between the inputs and categorizes together.

- Unsupervised learning is used to draw inferences from datasets consisting of input data without labeled responses.
- Since the examples given to the learner are unlabeled, the accuracy of the structure that is output by the algorithm cannot be evaluated.
- The most common unsupervised learning method is cluster analysis, which is used for exploratory data analysis to find hidden patterns or grouping in data.

Unsupervised learning continued.

- No learning of data features.
- We will be discovering data features given the data.
- Finds similarity between objects.
- In unsupervised learning approaches, we have little or no idea about what the result should look like.
- Data is presented and the algorithm analyzes and comes up with similarities by clustering together similar data features.
- By analyzing the data, unsupervised learning tries to find some structures of the presented data. *K-means clustering*, and *nearest neighbors* are some of the techniques used.

Examples of unsupervised learning

- Identifying areas of similar topology (example, Desert, forest, grass).
- Determining different groups of weather patterns.
- Discovering crime hot spots.
- Recommending items based on purchase history.

Cont.

- *Reinforcement learning*: This is somewhere between supervised and unsupervised learning.
- The algorithm gets told when the answer is wrong, but does not get told how to correct it.
- It has to explore and try out different possibilities until it works out how to get the answer right.
- Reinforcement learning is sometime called learning with a critic because of this monitor that scores the answer, but does not suggest improvements.
- Reinforcement learning is the problem of getting an agent to act in the world so as to maximize its rewards.

Review questions

- 1) Define machine learning.
- 2) Mention different techniques of machine learning.
- 3) Differentiate between supervised and unsupervised learning.
- 4) Describe some applications of machine learning.
- 5) What is the difference between traditional programming and machine learning?
- 6) Compare and contrast the challenges of creating algorithms that learn from their experience to improve their performance.